PEARSON **Mathematics** STUDENT BOOK | VICTORIA

eci

Contents

1	Approximation and real	
	numbers	XX
Recal	l i i i i i i i i i i i i i i i i i i i	ХХ
1.1	Create approximate representations of	
	irrational numbers	XX
1.2	Round real numbers	XX
1.3	Understand the relationship between rational	
	exponents and radicals	XX
1.4	Simplify roots and surds using addition	
	and subtraction	XX
1.5	Simplify roots and surds using multiplication	
	and division	XX
1.6	Simplify surds using factors	XX
1.7	Expand and simplify expressions containing surds	s XX
1.8	Rationalise fractions with surd denominators	XX
1.9	Rationalise fractions using conjugates	XX
Topic	review	XX

2 Algebra

Recall		ХХ
2.1	Simplify, multiply and divide algebraic fractions	ХХ
2.2	Add and subtract algebraic fractions	ХХ
2.3	Factorise algebraic expressions by taking	
	out a common factor	ХХ
2.4	Expand binomial products and factorise	
	monic quadratic expressions	XX
2.5	Expand and factorise special products	XX
2.6	Factorise by completing the square	ХΧ
2.7	Expand, factorise and simplify algebraic	
	expressions	ХΧ
Topic I	Topic review	

3 Linear equations

Recal		X)
3.1	Review solving of linear equations	XX
3.2	Solve linear equations involving an	
	algebraic fraction	XX
3.3	Review graphing of linear relationships	XX
3.4	Examine, parallel, horizontal and vertical lines	XX
3.5	Determine the equation of a straight line	
	that is parallel or perpendicular to another	XX
3.6	Solve simultaneous equations graphically	XX
3.7	Solve simultaneous equations algebraically	XX
Topic	review	ХХ
4	Linear inequalities	ХХ
Recal	I	хх
4.1	Graph vertical and horizontal regions in the	
	Cartesian plane	XX

4.2	Plot and describe linear inequalities with	
	two variables in the Cartesian plane	XX
4.3	Graph simultaneous inequalities	XX
4.4	Use linear inequalities to solve real-life problems	XX
4.5	Use inequalities to determine regions involving	
	circles	XX
Topic review		XX
•••••		

Solving quadratic equations XX

Recall		XX
5 1	Solve monic quadratic equations using the	
J. I	Solve monie quadratic equations using the	
	null factor law	XX
5.2	Solve simple quadratic equations by completing	
	the square and using the quadratic formula	XX
5.3	Solve non-monic quadratic equations using	
	the null factor law	XX
Горіс r	eview	XX

6 Exponential relationships

5

XX

XX

Recall	×	XX
6.1	Recognise exponential sequences and	
	determine a constant ratio	ХХ
6.2	Express and generate exponential sequences	ХХ
6.3	Use graphing software to plot and compare	
	exponential functions	ХХ
6.4	Solve exponential equations	ХХ
6.5	Model situations involving exponential	
	relationships	ХХ
Торіс і	review	ХХ

7 Modelling and function notation

Recall		XX
7.1	Use linear models in practical contexts	XX
7.2	Use quadratic models in practical contexts	XX
7.3	Use exponential models in practical contexts	XX
7.4	Recognise quadratics and exponential	
	relationships in real life applications	XX
Topic review		XX

8 Non-linear graphs

Recall		XX
3.1	Graph and compare quadratic relationships	XX
3.2	Graph parabolas of various forms and identify	
	various features	XX
3.3	Graph and compare exponential relationships	XX
3.4	Graph exponential equations and identify	
	transformation	XX

XX

XX

Contents

8.5	Graph and compare hyperbolas	XX
8.6	Graph and compare circles with different	
	radii and centres	XX
8.7	Recognise non-linear equations and	
	determine points of intersection	XX
8.8	Compare graphs of cubics and polynomials	XX
Торіс	Topic review	

9 Polynomials

Recall		ХΧ
9.1	Define and operate with polynomials	ХΧ
9.2	Divide polynomials	ХХ
9.3	Apply the factor and remainder theorems for	
	polynomials	ХХ
9.4	Identify and graph zeros of a polynomial	ХХ
9.5	Graph polynomial transformations and single,	
	double and triple roots	ХХ
Topic review		ХХ

10 Surface area and volume

	XX
Draw and describe the surface of right	
prisms and cylinders	XX
Calculate the surface area of prisms and	
cylinders	XX
Determine the surface area of a composite solid	XX
Solve problems involving the surface area	
of pyramids	X>
Solve problems involving the surface area	
of cones	XX
Solve problems involving the surface area	
of a sphere	XX
Calculate volume and capacity	XX
Determine the volume of cylinders and prisms	X۷
Understand the proportionality between the volum	ne
of prisms and pyramids	Xک
Understand the proportionality between the volum	ne
of cylinders and cones	XX
Solve problems involving the volume of a sphere	Xک
review	Xک
	• • • •
Average rate of change	ХХ
	XX
	Draw and describe the surface of right prisms and cylinders Calculate the surface area of prisms and cylinders Determine the surface area of a composite solid Solve problems involving the surface area of pyramids Solve problems involving the surface area of cones Solve problems involving the surface area of a sphere Calculate volume and capacity Determine the volume of cylinders and prisms Understand the proportionality between the volum of prisms and pyramids Understand the proportionality between the volum of cylinders and cones Solve problems involving the volume of a sphere review

Recail		~~
11.1	Calculate the average rate of a function	
	and a graph	ХΧ
11.2	Use a tangent to a graph to calculate the	
	limiting value of the rate of change	ΧХ
Topic review		ΧХ

12 Measurement and logarithmic scales

....

XX

XX

Recall		XX
12.1	Understand the connection between	
	logarithms and exponentials	XX
12.2	Interpret and use logarithmic scales	XX
12.3	Use logarithmic scales in real-world contexts	XX
12.4	Investigate logarithmic graphs	XX
12.5	Establish the laws of logarithms from	
	exponents	XX
12.6	Establish ands use a variety of logarithmic	
	results	XX
12.7	Use laws of logarithms to solve equations	XX
Topic	review	XX

13 Errors and precision in measurement

XX

XX

XX

Recall		XX
13.1	Recognise how errors with research measurement	ïS
	can impact results and bias outcomes	ХΧ
13.2	Identify the impact of compounding errors	
	on financial calculations	ХΧ
13.3	Determine the impact compounding measurement	t
	errors have in practical contexts	XX
Topic r	review	ХΧ

14 Pythagoras, trigonometry, angles and bearings

Recall		ХΧ
14.1	Solve 2D problems using Pythagoras'	
	theorem and trigonometry	XX
14.2	Use trigonometry to solve problems involving	
	angles measured in degrees and minutes	XX
14.3	Draw and solve problems involving angles of	
	elevation and depression	XX
14.4	Ilustrate bearings	XX
14.5	Solve 2D problems involving navigation	XX
14.6	Solve 3D problems using Pythagoras' theorem	XX
14.7	Solve 3D problems using trigonometry	XX
Topic	review	XX

15	Trigonometry in non-right-angled	
	triangles	XX
Recall		XX
151	Solve problems in non-right-angled triangles	

5.1	Solve problems in non-right-angled triangles	
	using the sine rule	XX

Contents

15.2	Solve problems in non-right-angled triangles	
	using the cosine rule	XX
15.3	Establish and apply the area rule for	
	any triangle	XX
Торіс	review	XX
	• • • • • • • • • • • • • • • • • • • •	
16	Trigonomotric oquations	
10	araphs and the unit sizele	vv
	graphs and the unit circle	~~
Recall		XX
16.1	Establish the symmetrical properties of	
	trigonometric functions and the unit circle	XX
16.2	Explore sine and cosine functions graphically	XX
16.3	Explore the tangent function graphically	XX
16.4	Solve trigonometric equations	XX
16.5 Tania	Understand radians as a measure of an angle	XX
Iopic	review	XX
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • ••
17	Modelling with plans, scale,	
	ratio and proportion	XX
Docall		vv
17 1	Solve practical problems involving propertion	
17.1	Use scale factor for 2D models	~~ XX
17.3	Use scale factor for area and volume	XX
17.4	Use plan and elevation diagrams to solve	
	problems	XX
Topic	review	XX
40	Coorrectuie the evenue and proofs	vv
10	Geometric theorems and proofs	~~
Recall		XX
18.1	Use the conditions for congruency and similarity	
	in triangles	XX
18.2	Understand the nature of geometric proof	XX
18.3	Prove and use congruence and similarity in	
10.4	triangles	XX
18.4	Prove and use the geometric properties of specia	al
10 F	quadrilaterals	XX
18.5 Tonio	Apply geometric properties of circles	
ropic	IEVIEW	~~
•••••		
19 N	etworks	
Recall		XX
noouli		~~~

Recall		XX
19.1	Develop the language of networks	XX
19.2	Construct network diagrams	XX

19.3	Understand the connection between polygons	vv
10 /	lise more complex network diagrams	
Topio		
Topic	leview	~~
••••		
20	Analysing and comparing data	XX
Recall		
20.1	Analyse published data representations	XX
20.2	Determine quartiles and interquartile range	XX
20.3	Create and use box plots	XX
20.4	Create five-number summaries from different	
	data displays	ХХ
20.5	Interpret data displays to draw conclusions and	
	make inferences	ХХ
20.6	Calculate and compare the spread of data using	
	standard deviation	XX
Topic review		XX

21 Two-variable statistics and data relationships

Recall		ΧХ
21.1	Identify and describe bivariate data relationships	ΧХ
21.2	Draw scatterplots and lines of best fit	ΧХ
21.3	Use scatterplots to interpret association in	
	bivariate data	ΧХ
21.4	Construct and analyse two-way tables	ΧХ
Торіс і	review	ХΧ

22 Probability (conditional, dependent and independent)

Recall		хх
22.1	Solve problems involving conditional probabilities	ΧХ
22.2	Solve problems involving independent and	
	dependent events	ΧХ
22.3	Design and conduct a probability investigation	ΧХ
Topic r	review	ХΧ

23 Counting principles

Recall		XX
23.1	Apply counting techniques	XX
23.2	Understand counting with restrictions	XX
23.3	Apply combinations	XX
23.4	Explore probability applications of counting	
	principles	XX
Topic r	review	XX

COVER **Shutterstock**: Andreichyn, Yurii, geometric pattern; Empics, graphs; Joingate, Fibonacci pattern; Kseniya, Abramova, horse.

XX

TOPIC

Linear inequalities

Recall

4.1	Graph vertical and horizontal regions
	in the plane
4.2	Graph and describe linear inequalities
	with two variables in the plane
4.3	Graph simultaneous inequalities
4.4	Use linear inequalities to solve
	practical problems
4.5	Use inequalities to determine regions
	involving circles
Tonic	review

2

25

36

000

Why learn this?

Understanding how linear inequalities and their associated regions in the plane are represented is fundamental for several reasons:

- It forms the basis for visualising and solving linear inequalities, which are common in algebra and essential for calculus.
- Graphing regions helps with understanding the relationship between variables and their constraints within a given system. This is important in fields such as economics, physics and engineering, where more than one solution may exist and it is necessary to identify the optimal one.

Graphing regions helps to visualise the possible and impossible solutions to mathematical problems. This supports analytical thinking and decision-making in academic and professional settings.

RECALL

I can interpret inequalities displayed on a number line

1 Write the inequality represented by each of the following.

I can graph linear equations

1 Graph each of the following linear equations on the same Cartesian number plane.

(b) y = -2x + 1(c) 2y = x + 4(d) 3x - y = 3(a) y = x - 4

I can identify the mutual solution of two linear equations graphically

1 Identify the coordinates of the mutual solution for each pair of graphed linear equations.

I can solve simultaneous linear equations algebraically

Solve the following pairs of simultaneous linear equations.

- (a) x + y = 4 and 2x y = 8
- (b) 3x 2y = 5 and x 2y = 3
- (c) 2x y = 10 and 2x + 3y = 6 (d) 4x 3y = 2 and 4y 4x = 3

Graph vertical and horizontal regions in the plane

Learning intention: To be able to graph vertical and horizontal regions in the plane. **Success criteria:**

- **SC1** I can graph horizontal and vertical regions with single boundaries.
- **SC 2** I can graph regions based on a horizontal or vertical interval.
- **SC 3** I can graph regions with horizontal and vertical boundaries.

Lesson warm-up

The divider

Practice using the language of less than, equal to and greater than to describe the relationship between everyday classroom objects.

Compare the width, length or weight of two items using statements such as 'is less than', 'is equal to' or 'is greater than.'

SC1 I can graph horizontal and vertical regions with single boundaries

When there is an inequality sign, the graph of the inequality is a shaded region.

A region is shaded when it contains the set of points that satisfies the inequality. Often it is easier to test a point, for example, (0, 0), to determine which side of the boundary to shade. A solid boundary line indicates a line that satisfies the inequality.

Symbol	Meaning	Type of boundary line
<	less than	Dashed line
or	or	<
>	greater than	
≤	less than or equal to	Solid line
or	or	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
≥	greater than or equal to	

Worked example

Graphing horizontal and vertical regions using the less than and greater than symbols

Sketch a graph of the following regions.

(a) x > -3

THINKING

Determine whether the boundary line will be solid or dashed.

Sketch the boundary line.

WORKING

The inequality sign is greater than (>), so the boundary line is dashed, meaning it is not included in the region.

The boundary line is x = -3.

Recall the meaning of the inequality symbol.

x > -3 means that the shaded region should cover the *x*-values that are greater than -3.

Shade and label the region.

Substitute the *x*- and *y*-values of a test point to verify that the shaded region is accurate.

At the origin (0, 0), x = 0:

0 > -3.

WORKING

This is true; therefore, the point satisfies the inequality and lies in the shaded region.

у 5-

3 -2 -1 -(0, 0)

0

-2 -3

5

x

ż

x > -3

(b) *y* < −3

THINKING

Determine whether the boundary line will be solid or dashed.

Sketch the boundary line.

Recall the meaning of the inequality symbol.

The inequality sign is less than (<), so the boundary line is dashed, meaning it is not included in the region.

y < -3 means that the shaded region should cover the *y*-values that are less than -3.

Worked example

Graphing horizontal and vertical regions using the less than or equal to and greater than or equal to symbols

Sketch a graph of each of the following regions.

(a) $x \ge 2$

Recall the meaning of the inequality used.

 $x \ge 2$ means that the shaded region should cover the *x*-values that are greater than or equal to 2.

Shade and label the region.

Substitute the *x*- and *y*-values of a test point to verify that the shaded region is accurate.

For the test point (3, 1), x = 3 and $3 \ge 2$. This is true; therefore, the point satisfies the inequality and lies in the shaded region.

(b) *y* ≤ −2

THINKING

ncor

Determine whether the boundary line will be solid or dashed.

Sketch the boundary line on a graph.

Check to see whether the boundary line is included in the region. Does the inequality sign also include 'equal to'?

WORKING

The inequality sign is greater than or equal to (\geq) , so the boundary line is solid, meaning it is included in the region.

The boundary line is y = -2.

The inequality sign is less than or equal to (\leq) , so the boundary line is solid, meaning it is included in the region.

Recall the meaning of the inequality used.

 $y \le -2$ means that the shaded region should cover the *y*-values that are greater than or equal to -2.

SC 2 I can graph regions based on a horizontal or vertical interval

When an interval of values is sketched on the same set of axes, an intersecting region is formed. The set of points inside the intersecting region will be the solution to the inequalities.

Graphing horizontal and vertical intervals

Sketch the following regions on the Cartesian plane.

(a) $-3 < x \le 2$

THINKING WORKING Identify and sketch the boundary lines. Boundary line 1: -3 < x is the same as x > -3. The boundary at x = -3 is dashed. Boundary line 2: For $x \le 2$, the boundary at x = -2 is solid. 5 4 3 x = -3x = 22 1 5x0 3 4 2 -2 -3 -4 rected Shade the region. 5 4 3 x = -3x = 22 -1 x 0 4 -2 3 -1 -2 $-3 < x \le 2$ -3 Substitute the *x*- and *y*-values of a test point to Substituting x = 0 results in $-3 < 0 \le 2$. verify that the shaded region is accurate. This creates a true interval; therefore, the point

lies within the interval.

(b) $-4 \le y < 5$

SC 3 I can graph regions with horizontal and vertical boundaries

As the number of inequalities increases, the region that satisfies all of them becomes more restricted.

Worked example

Graphing regions with both horizontal and vertical boundaries

Sketch each of the following on separate sets of Cartesian axes.

(a) x < 4 and $y \ge -3$

THINKING	WORKING
Identify and sketch the boundary lines.	Region 1: $x < 4$ The boundary line at $x = 4$ is dashed. Region 2: $y \ge -3$ The boundary line at $y = -3$ is solid.
Shade and label each of the regions.	y 4 4 3 x = 4 y = -3 y = -3 x = 4 x = 4 y = -3 x = 4 x = 4 y = -3 x = 4 y = -3
Substitute the <i>x</i> - and <i>y</i> -values of a test point to verify that the shaded region is accurate.	For the origin (0, 0), $x = 0$ and $y = 0$ satisfy each inequality.

0 < 4 and $0 \ge -3$; therefore, the origin is within the shaded region.

(b) 2 < x < 4 and y > 0

THINKING

Identify and sketch the boundary lines.

WORKING

Boundary line 1: 2 < x < 4

The boundary lines at x = 2 and x = 4 are dashed.

Region 2: *y* > 0

The boundary line at y = 0 is dashed.

(c) $-6 < x \le 4$ and $1 \le y < 5$

Practice

ANSWERS Page XXX

(d) $x \le -1$

1 Sketch each of the following inequalities on a separate graph.

(a)
$$y > 3$$
 (b) $y < 3$ (c) $x < 3$ (d) $x > 3$

2 Sketch each of the following inequalities on a separate graph.

(a) $y \ge -1$ (b) $y \le -1$ (c) $x \ge -1$

3 Sketch each of the following inequalities on a separate graph.

(a)
$$x \le \frac{3}{2}$$
 (b) $y > -3.2$

4 Consider the following graphs of inequalities and determine the rule that best represents the inequality shown.

SC 2 I can graph regions based on a horizontal or vertical interval

1 Sketch the following inequalities.

(a) $-3 \le x < 5$ (b) $-3 < x \le 5$ (c) $-3 \le x \le 5$ (d) -3 < x < 5

2 Sketch the following inequalities.

(a) -2 < y < 3 (b) $-2 < y \le 3$ (c) $-2 \le y < 3$ (d) $-2 \le y \le 3$

3 Consider the following graph.

- (a) Write the interval shown.
- (b) Select the points that belong to the interval from the list: (-4, 0), (2, 10), (-5, 4), (6, 2), (5, -2), (2, -4)

SC 3 I can graph regions with horizontal and vertical boundaries

- 1 For each of the following, state whether the given point lies in the region specified by the inequalities.
 - (a) $4 \le x$ and y < 2; (5, 0)
 - **(b)** $x < 3 \text{ and } 0 \le y \le 8; (3, 0)$
 - (c) $-4 < x \le 6$ and $-1 \le y < 2$; (2, 2)
- 2 Sketch each of the following on separate sets of Cartesian axes.
 - (a) $x \le 5 \text{ and } y < 3$
 - **(b)** $x \le 3$ and $-3 < y \le 4$
 - (c) $0 < x \le 5$ and $-5 \le y < 1$

3 Match the graph of each of the following regions with the inequalities that define it.

4 Calculate the area of the interior rectangle bounded by the inequalities $-3 \le x \le 2$ and $-3 \le y \le 2$.

Graph and describe linear inequalities with two variables in the plane

Learning intention: To be able to graph and describe linear inequalities with two variables in the plane.

Success criteria:

SC1 I can graph linear inequalities with variables on different sides of the inequality symbol.

SC 2 I can graph linear inequalities with variables on the same side of the inequality symbol.

Lesson warm-up

Sometimes true, always true or never true?

Decide whether the following statements are sometimes true, always true or never true.

Explain your reasoning.

-x is less than x

C,

 x^2 is greater than x

SC1 I can graph linear inequalities with variables on different sides of the inequality symbol

The inequality $y \ge 2x + 1$ is an example of a linear inequality with variables on either side of the inequality symbol.

Worked example

Graphing linear inequalities with variables on each side of the inequality symbol

Sketch the graph of each of the following inequalities.

(a) $y \le 3x$

THINKING

Determine the coordinates of the intercepts (or two points) of the straight line boundary.

WORKING

Boundary line: y = 3x

x-intercept, let y = 0

0 = 3x

```
0 = x
```

The graph passes through the origin (0, 0).

Additional point:

Let
$$x = 1$$

 $y = 3 \times 1$
 $= 3$

The coordinates of an additional point are (1, 3).

Determine whether the boundary line is dashed or solid.

$y \le 3x$

The boundary line is included because the symbol is 'less than or equal to'; therefore, it is solid.

Plot the points on the Cartesian plane and join with the boundary line.

A region that is 'less than' (<) or 'less than or

A region that is 'greater than' (>) or 'greater than or equal to' (\geq) will be shaded above the

equal to' (\leq) will be shaded below the

Shade and label the region.

boundary line.

boundary line.

Substitute the <i>x</i> - and <i>y</i> -values of a test point to verify that the shaded region is accurate.	Check (1, 2) at $x = 1$ and $y = 2$. $2 \le 3 \times x$ $2 \le 3 \times 1$ $2 \le 3$ The inequality is true; therefore, the point is in the shaded region.	013
(b) $y > 2x + 6$. 0.	0
THINKING	WORKING	

(b) y > 2x + 6

THINKING	WORKING
Determine the coordinates of the intercepts (or two points) of the straight line boundary. Determine the intercepts for the boundary line. Check to see whether the boundary line is included in the region.	Boundary line: $y = 2x + 6$ x-intercept, let $y = 0$ 0 = 2x + 6 -6 = 2x x = -3 The coordinates of the x-intercept are (-3, 0). y-intercept, let $x = 0$ $y = 2 \times 0 + 6$ = 6 The coordinates of the y-intercept are (0, 6). The line will be dotted as the inequality is >; therefore, the boundary line is not included in the region.
Determine whether the boundary line is dashed or solid.	y > 2x + 6 The boundary line is not included in the region because the symbol is 'greater than'; therefore, it is dashed.
Plot the points on the Cartesian plane and join with the boundary line.	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$

Shade and label the region.

A region that is 'less than' < or 'less than or equal to' \leq will be shaded below the boundary line.

A region that is 'greater than' > or 'greater than or equal to' \geq will be shaded above the boundary line.

Substitute the *x*- and *y*-values of a test point to verify that the shaded region is accurate.

 $4 > 2 \times (-3) + 6$

4 > 0

The inequality is true; therefore, the point is in the shaded region.

SC 2 I can graph linear inequalities with variables on the same side of the inequality symbol

The inequality x - 2y > 1 is an example of a linear inequality that has both variables on the same side of the inequality symbol.

Graphing linear inequalities with variables on the same side of the inequality symbol

Sketch the graph of 3x - y < 6.

THINKING

WORKING

Determine the coordinates of the intercepts (or two points) of the straight line boundary.

Boundary line: 3x - y = 6

y-intercept, let x = 0

 $3 \times 0 - y = 6$

$$0 - y = 6$$

y = -6

The coordinates of the *y*-intercept are (0, -6).

x-intercept, let y = 0

3x - 0 = 6

3x = 6x = 2

The coordinates of the x-intercept are (2, 0).

Determine whether the boundary line is dashed or solid.

Plot the points on the Cartesian plane and join with the boundary line.

Corre

The boundary line will be dashed, and it is not included in the region because the inequality sign is <.

Shade and label the region.

A region that is 'less than' (<) or 'less than or equal to' (\leq) will be shaded below the boundary line.

A region that is 'greater than' (>) or 'greater than or equal to' (\geq) will be shaded above the boundary line.

Substitute the *x*- and *y*-values of a test point to verify that the shaded region is accurate.

For (0, 0), x = 0 and y = 03x - y < 63(0) - 0 < 6

0 < 6

This is true; therefore, the point satisfies the inequality. The required region is on this side of the boundary line.

Practice

(a) y > 4x

ANSWERS Page XXX

SC1 I can graph linear inequalities with variables on different sides of the inequality symbol

1 Sketch each of the following inequalities on a separate graph.

(a) y < x (b) y > -x (c) $y \le -2x$ (d) $y \ge 2x$

2 Sketch each of the following inequalities on a separate graph.

(a) y > 2x + 1 (b) $y \ge 2x + 1$ (c) y < 2x + 1 (d) $y \le 2x + 1$

3 Sketch each of the following inequalities on a separate graph.

(b)
$$4x \ge y$$
 (c) $y \le \frac{1}{2}x + 2$ **(d)** $y > 6x + 3$

nco

4 Consider the following graphs of inequalities and determine the rule that best represents the inequality shown.

5 For each of the following, state whether the coordinate pair belongs in the area required for the given inequality.

(a)	$y \le 4 - x; (1, -1)$	(b) $y > \frac{3(x-2)}{2};$ (-2, -8)
(c)	$y \ge \frac{5(-3x+2)}{3};$ (1, -3)	(d) $y < -3\left(\frac{6-2x}{4}\right);$ (3, -2)

SC 2 I can graph linear inequalities with variables on the same side of the inequality symbol

- 1 Consider the inequality 12x + 2y < 4.
 - (a) Determine the coordinates of the *y*-intercept.
 - (b) Determine the coordinates of the *x*-intercept.
 - C Determine whether the boundary line is dashed or solid.
 - (d) Verify whether (0, 0) is in the shaded region or not.
 - (e) Graph the inequality.

2 For each of the following inequalities in the form ax + by = c, write in gradient-intercept form and then graph the inequality.

(a) y + 3x < 8 (b) $y + 3x \ge 8$ (c) $y - 3x \le 8$ (d) y - 3x > 8

- 3 For each of the following inequalities in the form ax + by = c, write in gradient-intercept form and then graph the inequality.
 - (a) 2y + 6x < 9 (b) $2y + 6x \ge 9$ (c) $2y 6x \ge 9$ (d) $2y 6x \le 9$
- 4 Graph the regions y > -x and -y > x. Use your answer to explain how a region specified with a greater than symbol can include shading under the straight line.
- 5 For each of the following inequalities in the form ax + by = c, write in gradient-intercept form and then graph the inequality.
 - (a) y 2x > 1 (b) $2x y \ge 1$
- (c) $y 2x \le -1$ (d) 2x y < -1
- 6 Sketch each of the following regions.

(a)
$$2y - 3x \ge -16$$
 (b) $y + 2x < -6$

7 Consider the following graph.

- (a) Write the linear inequality that best describes the above graph.
- (b) Using the graph, verify whether (-4, 2) is a solution to the inequality.
- (c) Determine the points of two solutions to the inequality.

Incol

Graph simultaneous inequalities

Learning intention: To be able to graph simultaneous inequalities. **Success criteria:**

SC1 I can graph regions in the Cartesian plane using simultaneous inequalities.

Lesson warm-up

Intersecting regions

Use graphing software to sketch $y \ge x$ and y < -x on the same graph.

Region A is unshaded, which indicates no solution lies within this region. Region B is shaded once, which indicates this region satisfies one of the inequalities. Region C is shaded once, which indicates this region satisfies one of the inequalities. Region D is the overlapping region, which indicates the solution set to both inequalities. Now, plot each of the following points on the same graph: (0, 1), (1, 0), (0, -1), (-1, 0) and (-3, 1). What does the overlapping shaded region represent? Explain your reasoning.

SC1 I can graph regions in the Cartesian plane using simultaneous inequalities

When two linear inequalities are sketched on the same set of axes, and the boundary lines intersect, an intersecting region is formed. The point of intersection of the boundary lines is the solution to the corresponding simultaneous equations. Points within the intersecting region are solutions to the system of linear inequalities. A test point such as (0, 0) can be used to identify or verify the intersection region so long as it is not on one of the boundary lines.

Graphing regions using simultaneous inequalities

Shade the intersecting region for each of the following pairs of inequalities.

(a) $y \ge -3x$ and y < 2x

THINKING

Determine the coordinates of the intercepts (or two points) of each of the straight-line boundaries.

WORKING

Graphs in the form y = ax pass through the origin (0, 0). Boundary line 1: y = -3xAt x = 1: $y = -3 \times (1)$ = -3The coordinates of another point are (1, -3). Boundary line 2: y = 2xAt x = 1: $y = 2 \times (1)$ = 2The coordinates of another point are (1, 2). The line y = -3x will be solid because the boundary line is included in the region (\geq).

The line y = 2x will be dashed since the boundary line is not included in the region (<).

Determine whether the boundary lines are dashed or solid.

Plot the points on the Cartesian plane and join with the boundary line.

C

Shade and label the regions.

A region that is 'less than' (<) or 'less than or equal to' (\leq) will be shaded below the boundary line. A region that is 'greater than' (>) or 'greater than or equal to' (\geq) will be shaded above the boundary line.

Substitute the *x*- and *y*-values of a test point to verify the shaded region is accurate.

The test point is (2, 0).

Substitute the test point into each of the inequalities.

 $y \ge -3x$

 $0 \ge -3 \times 2$

 $0 \ge -6$

y < 2x

0 < 2 × 2 0 < 4

The inequalities are both true; therefore, the point is in the required region.

(b) $y \le -x + 3$ and y > x - 1

	THINKING	WORKING	
	Determine the coordinates of the intercepts (or two points) of each of the straight-line boundaries.	Boundary line 1: $y = -x + 3$ y-intercept, let $x = 0$: y = -0 + 3 = 0 + 3 = 3 The coordinates of the y-intercept are (0, 3). x-intercept, let $y = 0$: 0 = -x + 3 x = 3 The coordinates of the x-intercept are (3, 0). Boundary line 2: $y = x - 1$ y-intercept, let $x = 0$: y = 0 - 1 = -1 The coordinates of the y-intercept are (0, -1). x-intercept, let $y = 0$: 0 = x - 1 1 = x The coordinates of the x-intercept are (1, 0).	
	Determine whether the boundary lines are dashed or solid.	The boundary line $y = -x + 3$ will be solid because the boundary line is included in the region (\leq). The line $y > x - 1$ will be dashed because the boundary line is not included in the region (>).	
J	Determine the coordinates of the point of intersection.	-x + 3 = x - 1 3 = 2x - 1 4 = 2x 2 = x Substitute the value of x into one of the equations of the boundary lines: y = x - 1 = 2 - 1 = 1	

The coordinates of the point of intersection are (2, 1).

Plot the points on the Cartesian plane and join with the boundary line.

Shade and label the regions.

A region that is 'less than' (<) or 'less than or equal to' (\leq) will be shaded below the boundary line. A region that is 'greater than' (>) or 'greater than or equal to' (\geq) will be shaded above the boundary line.

Substitute the *x*- and *y*-values of a test point to verify that the shaded region is accurate.

The test point is (0, 0). Substitute the test point into each inequality.

$y \leq -x + 3$
$0 \le -0 + 3$
0 ≤ 3
y > x - 1
0 > 0 - 1
0 > -1
The inequalities are both true; therefore, the point is in the required region.

(c) 6x + y < 12 and $3x - 2y \ge 21$

THINKING	WORKING
Determine the coordinates of the	Boundary line 1: $6x + y = 12$
intercepts (or two points) of each	<i>y</i> -intercept, let $x = 0$:\
	$6 \times 0 + y = 12$
	0 + <i>y</i> = 12
	<i>y</i> = 12
	The coordinates of the <i>y</i> -intercept are (0, 12).
	x-intercept, let $y = 0$:
	6x + 0 = 12
	6x = 12
	<i>x</i> = 2
	The coordinates of the x -intercept are (2, 0).
	Boundary line 2: $3x - 2y = 21$
	<i>y</i> -intercept, let $x = 0$:
	$3 \times 0 - 2y = 21$
	$0-2y = 21 -2y = 21 y = -\frac{21}{2} \text{ or} -10.5$
	The coordinates of the y -intercept are (0, -10.5).
	x-intercept, let $y = 0$:
20	$3x - 2 \times 0 = 21$
	3x - 0 = 21
.0.	3x = 21
	<i>x</i> = 7
	The coordinates of the <i>x</i> -intercept are (7, 0).
Determine whether the boundary lines are to be dashed or solid.	The boundary line $3x - 2y \ge 21$ will be solid because the boundary line is included in the region (\ge). The line $6x + y < 12$ will be dashed because the boundary line is not included in the region ($<$).

Determine the coordinates of the point of intersection.

Solve the simultaneous equations using the method of elimination.

$$6x + y = 12 \quad [1]$$

$$3x - 2y = 21 \quad [2]$$

$$[1] \times 2 \Rightarrow \underline{12x + 2y} = \underline{24} \quad [3]$$

$$[2] + [3] \Rightarrow 5x = 45$$

$$x = 3$$
Substitute $x = 3$ into $6x + y = 12$.

$$6 \times 3 + y = 12$$

$$18 + y = 12$$

$$y = -6$$

The coordinates of the point of intersection are (3, -6).

Plot the points on the Cartesian plane and join with the boundary line.

Write the inequalities in the form	6 <i>x</i> + <i>y</i> < 12
y = mx + c.	<i>y</i> < 12 – 6 <i>x</i>
Written in this form, the region	and
that is 'less than' (<) or 'less than	3x - 2y > 21
below the boundary line (\leq) will be snaded	$3x \ge 21 + 2y$
A region that is 'greater than' (>)	$3x - 21 \ge 2y$
or 'greater than or equal to' (\geq)	$2y \leq 3x - 21$
will be shaded above the	3 m 10 F
boundary line.	$y \ge -x - 10.5$

e

$$6 \times 2 + (-14) < 12$$

 $12 - 14 < 12$
 $-2 < 12$
 $3 \times 2 - 2 \times (-14) \ge 21$
 $6 + 28 \ge 21$
 $34 \ge 21$
The inequalities are both true; therefore, the point is in the

Worked example

Determining the system of linear inequalities for a region

required region.

Consider the shaded region shown below.

1ncc

(a) Determine the system of linear inequalities that give the above region.

THINKING	WORKING	
Identify the number of boundaries.	There are three boundary lines.	
Determine the equation of each boundary	Boundary line A:	
line.	$(x_1, y_1) = (-3, 0)$ and $(x_2, y_2) = (0, 3)$	
	$m = \frac{y_2 - y_1}{x_2 - x_1}$	0
	$=\frac{3-0}{0-(-3)}$	
	$=\frac{3}{3}$	
	The <i>y</i> -intercept is (0, 3).	
	The equation of boundary line A is $y = x + 3$.	
	Boundary line <i>B</i> :	
	$(x_1, y_1) = (0, 3)$ and $(x_2, y_2) = (3, 0)$	
0	$m = \frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{0 - 3}{3 - 0}$ = $\frac{-3}{3}$ = -1	
	The coordinates of the y -intercept are (0, 3).	
	The equation of boundary line <i>B</i> is $y = 3 - x$	
	Boundary line <i>C</i> is given by the horizontal line $y = 0$.	
Determine the inequality sign corresponding to each boundary line.	The region lies below boundary line A and the boundary line is dashed, meaning it is not included in the region. The inequality is $y < x + 3$.	
CO'	The region lies below boundary line <i>B</i> and the boundary line is solid, meaning it is included in the region. The inequality is $y \le 3 - x$.	
	The region lies above boundary line C and the boundary line is dashed, meaning it is not included in the region. The inequality is $y > 0$.	

Substitute the x - and y -values of a test point to verify that the inequalities represent the shaded region	Regarding (-1, 1), $x = -1$ and $y = 1$. Region A:	
shaded region.	<i>y</i> < <i>x</i> + 3	
	1 < -1 + 3	
	1 < 2	
	Region <i>B</i> :	
	$y \le 3 - x$	
	1 ≤ 3 − (−1)	
	1 ≤ 2	
	Region C:	
	<i>y</i> > 0	
	1 > 0	
	The inequalities are all true and could represent a region containing the test point chosen.	

(b) Verify that (-1, 3) is not a solution to the system of linear inequalities.

	ΤН	IN	KI	Ν	G
--	----	----	----	---	---

Demonstrate graphically that the point does not lie within the required region.

8018

WORKING

Graphically the point is outside the region.

Demonstrate algebraically that the point Th does not lie within the one of the regions. In

The graph shows that the point is above boundary line A. Regarding (-1, 3), x = -1 and y = 3.

Region *A*: y < x + 3 $3 \ge -1 + 3$

The point does not satisfy the inequality for region *A*; therefore, it is not a solution to the system of linear inequalities.

(c) Determine the area of the shaded region.

THINKING	WORKING
Identify the shape and recall the area formula.	The shaded region is a triangle with a base of 6 units and height of 3 units. Formula for the area of a triangle: $A = \frac{b \times h}{2}$
Calculate the area.	When $b = 6$ and $h = 3$: $A = \frac{b \times h}{2}$ $= \frac{6 \times 3}{2}$ $= 9$
Write the answer.	The area of the shaded region is 9 square units.

Practice

ANSWERS Page XXX

SC1 I can graph regions in the Cartesian plane using simultaneous inequalities

- 1 Sketch each pair of inequalities and state the point of the intersection.
 - (a) y > 4x and $y \ge -4x$
 - (c) y < 28 4x and $x + y \le 13$
 - (e) 4x + 3y > 31 and 2x + 4y < 28
- 2 Consider the following graphs of inequalities:
 - (a) Determine the system of linear inequalities that would give the above region of intersection.
 - (b) Demonstrate that (4, -5) is not a solution to the above system of linear inequalities.

(d) $y \ge -2x - 1$ and y < x + 5

(f) $x + 2y \ge 6$ and x - 3y > -12hat the

Sketch $4x + 3y \le 31$, $x \ge -4$ and 4y + 2x > 28 onto the same graph.

- (a) Determine the coordinates of the points of intersection.
- (b) Shade where the three inequalities overlap of intersection.
- (c) Calculate the area of the shaded triangle.

Use linear inequalities to solve real-life problems

Learning intention: To be able to use linear inequalities to solve real-life problems. **Success criteria:**

SC1 I can set up and use linear inequalities to identify all possible solutions for a real-life problem.

Lesson warm-up

Making choices

A chocolate bar costs \$8 and a bucket of popcorn costs \$12. Each student can spend a maximum of \$24.

Investigate:

- (a) If students only purchase one type of item, then what is the maximum number of items that could be purchased?
- (b) If students purchase both types of items, then list all the possible combinations and determine the maximum number of items that could be purchased.

Rather than listing all possible combinations, how can you solve the problems algebraically or graphically?

SC1 I can set up and use linear inequalities to identify all possible solutions for a real-life problem

Linear inequalities can be used to graphically represent all possible outcomes in real-life problems and help make choices. Represent a real-life problem using a system of linear inequalities as follows.

- · Identify the two variables and any restrictions that might apply.
- Write a linear inequality to represent the problem.
- Sketch the graph.
- Identify all possible solutions.

Worked example

Set up and use linear inequalities to identify all possible solutions for a real-life problem

Identify all the combinations of trips to the cinema (\$16) and bowling alley (\$20) on a holiday budget of no more than \$160. Consider how many trips to each you can purchase.

(a) Identify the two variables and any restrictions that might apply.

THINKING	WORKING
Identify the two variables.	Let x be the number of trips to the cinema. Let y be the number of trips to bowling. x and y cannot be negative. $x \ge 0$ $y \ge 0$
Use the variables to write a linear inequality that represents the problem.	The cost of all trips to the cinema and bowling cannot exceed \$160. $16x + 20y \le 160$

(b) Sketch the graph.

THINKING	WORKING
Determine the coordinates of the intercepts (or two points) of the boundary line.	Boundary line: $16x + 20y = 160$
	x-intercept, let $y = 0$:
	16x + 20(0) = 160
	16x = 160
	<i>x</i> = 10
	The coordinates of the x -intercept are (10, 0).
	<i>y</i> -intercept, let $x = 0$:
	16(0) + 20y = 160
	20 <i>y</i> = 160
	<i>y</i> = 8
	The coordinates of the y -intercept are (0, 8).
Determine whether the boundary line is to be dashed or solid.	Boundary line: $16x + 20y \le 160$
	The line will be solid because the inequality is \leq .
	Boundary line: $x = 0$
	The line will be solid because the inequality is \geq .
	Boundary line: $y = 0$
	The line will be solid because the inequality is \geq .

only

(c) List any three possible solutions.

THINKING	WORKING
Possible solutions are all points that are inside the shaded region of the graph. List some possible solutions.	Both x and y are non-negative integers; therefore, some of the possible solutions: (1, 7), (2, 6), (3, 5), (4, 4)
	(5, 3), (6, 3), (7, 2), (8, 1)
List three of the solutions in context.	2 trips to the cinemas, 6 trips to the bowling alley 6 trips to the cinemas, 3 trips to the bowling alley 4 trips to the cinemas, 4 trips to the bowling alley All three options are possible combinations on a budget of \$160 or less.

Practice

ANSWERS Page XXX

SC1 I can set up and use linear inequalities to identify all possible solutions for a real-life problem.

- Sukh has \$10 to spend for lunch. Each muffin costs \$5 and each cookie costs \$2 at his school café. Consider how many of each he can purchase.
 - (a) Identify the two variables and any restrictions that might apply.
 - (b) Write a linear inequality that represents the problem.
 - (c) Sketch the graph.
 - (d) List any three possible solutions.
- 2 Christian is a vet who specialises in fish and hamsters. An appointment for fish usually takes 10 minutes and it takes 15 minutes for a hamster. Christian can work a maximum of 7.5 hours a day.
 - (a) Identify the two variables and any restrictions that might apply.
 - (b) Write a linear inequality to represent the problem.
 - (c) Sketch the graph.
 - (d) Select the possible solutions from the list (45, -1), (10, 30), (10, 12), (30, 0), $\left(30, \frac{32}{3}\right)$
- 3 Demitri works as a tutor and is paid \$3 per hour. He also works as a baby-sitter and is paid \$6 per hour. Because of his study, he cannot work more than 15 hours each week, but he needs to make at least \$66 to cover his weekly expenses.
 - (a) Identify the two variables and any restrictions that might apply.
 - (b) Write inequalities to represent the problem.
 - (c) Sketch the graph.

- 4 Students are required to complete both test A and B for a subject. Students need to achieve at least 19 in test A and at least 32 as the combined result to successfully pass the subject.
 - (a) Identify two variables and any conditions that might apply.
 - (b) Write the inequities to represent the problem.
 - (c) Sketch the graph.
 - (d) A student achieved 15 in test B. What is the minimum integer result on test A for him to successfully pass this subject?
- 5 Alexis is planning to sell two handmade crochet items at a local art market: frogs and mini bees. The region below shows information about the number of frogs and the number of mini bees she plans to make in a week.
 - x = number of frogs she plans to make.

y = number of mini bees she plans to make.

- (a) Can Alexis make 40 mini bees and 25 frogs in a week?
- (b) Determine the system of inequalities.
- (c) The profit for each frog is \$5 and for each mini bee it is \$15. Determine the maximum profit that Alexis can make in that week.

Incorrec

Use inequalities to determine regions involving circles

Learning intention: To be able to use inequalities to determine regions involving circles. **Success criteria:**

SC1 I can test whether a given point satisfies an inequality involving a circle.

Lesson warm-up

Location

During the COVID-19 lockdowns, Victorian residents were restricted to travel within a 15 kilometres radius from their home. How can you determine whether a destination is within the 15 kilometres radius, on the exact circle formed by the 15 kilometres radius or farther away from the 15 kilometres radius? List three locations for each situation using the given graph.

SC1 I can test whether a given point satisfies an inequality involving a circle

Like linear inequalities, a point can be tested to determine whether it satisfies an inequality involving a circle of a given radius. Substitute the x- and y-values of the point into the inequality to determine which side of the boundary to shade.

4.2

The standard equation of a circle is given by $(x - h)^2 + (y - k)^2 = r^2$, in which *h* and *k* are the coordinates of the centre and *r* is a non-zero real number representing the radius of the circle. For example, the unit circle, with centre (0, 0) and a radius of 1 unit, is defined by $x^2 + y^2 = 1$.

The table below outlines the three alternatives when the x- and y-values of a given point are substituted into a circle inequality.

Test inequality	Region of the point
$x^2 + y^2 < r^2$	inside the circle
$x^2 + y^2 = r^2$	on the circle
$x^2 + y^2 > r^2$	outside of the circle

Worked example

Testing whether a given point satisfies an inequality involving a circle

Sketch $x^2 + y^2 > 49$ and determine whether the point (4, 6) lies inside the circle, outside the circle (in the shaded region) or on the circle.

	THINKING	WORKING
Determine the coordinates of the intercepts (or two points) of the boundary.	Determine the coordinates of the intercepts (or two points) of the boundary.	Boundary: $x^2 + y^2 = 49$
		x-intercept, let $y = 0$:
		$x^2 + 0^2 = 49$
	$x^2 = 49$	
		$x = \pm 7$
		The coordinates of the x -intercept are (7, 0) and (-7, 0).
		<i>y</i> -intercept, let $x = 0$:
		$0^2 + y^2 = 49$
		$y^2 = 49$
		$y = \pm 7$ The sporting of the <i>y</i> intercept are $(0, 7)$ and $(0, -7)$
		The coordinates of the g -intercept are $(0, 7)$ and $(0, -7)$.

Determine whether the boundary is dashed or solid.

Plot the points on the Cartesian plane and join with the boundary curve. The curve will be dashed because the inequality is >.

Shade and label the region.

Regarding a circle with radius r: $x^2 + y^2 < r^2$ is inside the circle, $x^2 + y^2 = r^2$ is on the circle and $x^2 + y^2 > r^2$ is outside the circle.

Determine whether the given point (4, 6) lies inside, outside or on the circle.

G

The test is point (4, 6).

Graphically, point (4, 6) lies outside the circle, so it satisfies the inequality. Algebraically, substitute the test point into the inequality:

$$x^{2} + y^{2} > 49$$

 $(4)^{2} + (6)^{2} > 49$
 $52 > 49$

The inequality is true; therefore, the point is outside the circle in the shaded region.

Use inequalities to determine the boundary of a semicircle

Sketch $y \le \sqrt{25 - x^2}$ and determine of the point (3, 5) lies within the shaded region.

	THINKING	WORKING
	Determine the intercepts for the boundary. Check to see whether the boundary is included in the region.	The graph of $y = \sqrt{25 - x^2}$ is a semicircle, which is part of the boundary.
		The inequality $y \le \sqrt{25 - x^2}$ is only defined when the square root is applied to a non-negative number; therefore,
		$25 - x^2 \ge 0$
		$x^2 \le 25$
		$-5 \le x \le 5$
		The vertical lines $x = -5$ and $x = 5$ are boundary lines when $y \le 0$.
		Let $y = 0$ to determine the <i>x</i> -intercept.
Use the points to sketch the boundary on a Cartesian plane.		Regarding $y = 0$:
		$0 = \sqrt{25 - x^2}$
		$0^2 = 25 - x^2$
		$25 = x^2$
	*e0.9	$\pm 5 = x$
		The coordinates of the x -intercepts are (5, 0) and (-5, 0).
		Let $x = 0$ to determine the <i>y</i> -intercept.
		$y = \sqrt{25 - 0^2}$
	G	$y = \sqrt{25}$
	<i>y</i> = 5	
	The coordinates of the y -intercept are (0, 5).	
		The curve will be solid because the inequality is \leq .
	Use the points to sketch the boundary on a Cartesian plane.	Points are (5, 0), (0, 5) and (–5, 0)

(5, 0)

6 8

2 0

-10 -

10 x

Determine which side of the boundary to shade by testing a point that is not on the boundary line. The test point is (0, 0).

Substitute the test point into the inequality:

10

8

0

6(0, 5)

(0, 0)

2

$$y \le \sqrt{25 - x^2}$$
$$0 \le \sqrt{25 - 0^2}$$
$$0 \le 5$$

This is true. 0 is less than or equal to 5, hence the point satisfies the inequality. The required region is on this side of the boundary line.

(5, 0)

6

Shade the region that includes the point that satisfies the inequality. Label the graph and region.

Test the inequality to determine whether a given point lies inside, outside or on the boundary.

The test point is (3, 5).

 $y \leq \sqrt{25 - x^2}$

-5, 0

-6

-10 -8

Graphically, point (3, 5) lies outside the boundary, so it does not satisfy the inequality.

Algebraically, substitute the test point into the inequality:

5 ≤
$$\sqrt{25-3^2}$$

5 ≤ $\sqrt{16}$
5 ≰ 4

This is false. 5 is not less than or equal to 4, hence the point does not satisfy the inequality. The given point is on the other side of the boundary line.

Practice

ANSWERS Page XXX

SC1 1 can test whether a given point satisfies an inequality involving a circle

Graph the following regions.

(a)
$$x^2 + y^2 = 4$$

(b) $x^2 + y^2 \ge 9$
(c) $x^2 + y^2 \le 25$
(e) $x^2 + y^2 > 49$

(c) $x^2 + y^2 < 16$

2 Decide whether the following points lie inside the shaded region, outside the shaded region or on the boundary.

3 For the following graph, write the coordinates of 4 points that lie:

- (a) on the boundary $x^2 + y^2 = 64$ (note that the boundary is not included in the shaded region)
- (b) inside the shaded region $x^2 + y^2 < 64$
- (c) outside the shaded region $x^2 + y^2 > 64$
- 4 Consider $y > \sqrt{16 x^2}$.
 - (a) Sketch the inequality on a Cartesian plane.
 - (b) Select the points that belong to the inequality from the list: (2, 1), (1, -1), (-1, 5), (5, 1), (0, 4), (-3, 4)

5 Consider the following graph.

- (a) Determine the inequalities that best represent the graph shown.
- (b) Decide whether the following points lie inside, outside or on the boundary.

- 6 Consider $y \ge \sqrt{81 x^2}$.
 - (a) State the boundary.
 - (b) Sketch the inequality.
 - (c) Decide whether (-3, 5) lies inside, outside or on the boundary.
- 7 Consider $x^2 + y^2 \le 16$ and y > x.
 - (a) State the boundaries.
 - (b) Sketch the inequalities.
 - (c) State the points of intersection. Give your answer as exact values.
- 8 Determine whether (3, 4) satisfies the following inequalities.
 - (a) $y^2 > 64 x^2$

(c) $y^2 < 3x$

(b) $y \le \sqrt{64 - x^2}$ (d) $(x - 2)^2 + (y - 2)^2 < 64$

- 9 Consider $y^2 < 36 x^2$
 - (a) Sketch the inequality.

 $(-7, 3), \left(4, \frac{7}{3}\right)$

(b) Select the points that belong to the inequality from the list: (1, -3), (5, -5), (-1, -5),